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A method of fractional steps is used to extend a semi-implicit finite-difference technique for 
mu!tidimensional two-phase flow calculations. This extension permits time step size to be 
chosen independent of convection velocities in one space direction. and still resolves 
multidimensional coupled sonic and phase exchange effects implicitly by forming a simp!e 
Poisson prob!em for pressure. Because pure time-splitting by physical phenomena was found 
unsuited to thermal hydraulics problems, a stabilizing corrections method was chosen. An 
application in nuclear reactor safety analysis is demonstrated. 

INTRODUCTION 

As nuclear reactor safety analysis becomes more sophisticated, detailed model!ing 
of reactor behavior calls for increasing flexibility and efficiency of numerical 
calculations. .An example in the field of light water reactor thermal-hydraulic analysis 
is the increasing emphasis on multidimensional calculations of two-phase flow. These 
problems can be so complicated that, even aside from the many difficult questions 
about physically modelling multidimensional two-phase flow (e.g., see 11-3 j), there 
appears to be no single numerical method that is best for computing all such 
problems. At least three numerical approaches have been deployed for various classes 
of multidimensional two-phase flow problems, 

One type of numerical method is the marching algorithm which has been applied 
where flow in a three-dimensional region is predominately along one coordinate 
direction. Such is the case within the core barrel of a reactor under normal operating 
conditions, where coolant enters at the bottom and flows axially upward. An example 
of a marching method for this application is presented by Masterson 14); assuming 
flow conditions known at the inlet, implicit finite difference equations are solved by 
marching one plane at a time toward the outlet. Done properly, this approach is 
effective for many reactor core thermal-hydraulic problems with strong axial flow, 
including some with local flow blockages. It has the advantage of being numerically 
stable for arbitrarily large time steps. Its limitations lie in the assumptions made in 
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order to solve by marching. First, certain transport terms in the multidimensional 
momentum equations are ignored; claims that these terms may be neglected (e.g., [.5, 
p. 71) are not in all circumstances convincing. Second, problems with even local flow 
reversal cannot be treated. Third, propagation of disturbances upstream can be 
calculated only with restrictions (e.g., assuming completely incompressible flow). As 
a result, certain natural flow boundary conditions are very difficult to implement. 
Light water reactor core thermal hydraulics will be the chief interest of this paper, but 
due to the several shortcomings of marching methods we will seek a different 
approach. 

A second multidimensional calculation method for two-phase flow is that 
developed for the TRAC code [6]. Part of the motivation for this method was the 
decision to use a two-fluid model of two-phase flow. (The method has strong 
advantages even for simpler two-phase flow models such as the homogeneous 
equilibrium model.) The differential equations of the model are 

LJap,/& + V . apovo = r, 

a(1 - a)pJ& + V . (1 - a)p,v, = 4, 

ap,[;iv,/dt + v, - Vv,] + aVP = -K(v, - vJ - F, . v, - g,, 

(1 - a)pJavJ& + v, . Vv,] + (1 - a)VP=K(v, -VJ -F, . v/-g!, 
(1) 

aap,e,/at + V . apoeuv, + P[aa/at + V . av,] = Q f Q,, 

a(1 - a)p,eJat + v . (1 - a)p,e,v, + P[-au/at + V * (I- a>v,l = -Q + Ql, 

which represent local average mass, momentum, and energy balances for the vapor 
and the liquid phases, with interfacial exchanges governed by the first terms on the 
right-hand sides (r, K, Q). The remaining terms on the right are flow-dependent 
external sources or sinks. Basic quantities are pressure P, vapor volume fraction a, 
velocities v, and vi, and phase temperatures; closure comes from specifying the right- 
hand side, plus equations of state for densities p,, pI and specific internal energies 
eLI, e,. 

The TRAC method for solving these equations is a semi-implicit finite difference 
technique that generalizes the ICE method [7] for solving single-phase flow problems. 
Consider the simplified single-phase equations 

PI + v * pv = 0, 

p[v, + v * Vv] + VP = -g, 

with appropriate boundary conditions (e.g., v . n = 0 or P = const. on different 
portions of the boundary). Taking 5 = [P, v]‘, we can write 
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g’= L 
c-=v*v 0 

0 1 pv=v q 
Here V represents the effects of convection, and 8’ and 9 govern sonic ~ro~agat~o~. 
Linearizing and introducing appropriate space and time differences in place of 
derivatives leads to the semi-implicit equation \ 

(E + SAt)y+’ = (E - CAb)g” - G. (2) 

The advantage of treating convection terms explicitly is that the problem 
(E + SAt)c”“’ = r = [rP, rJt can be reduced to the problem of solving 

[cc= - (At)‘V*]P+’ = r, - ArV rr, (3) 

a standard elliptic problem which has been extensively studied and for which et%ciem 
solution techniques are known. This approach can be generaiized to a semi-irn~i~c~t 
two-fluid method: let 5 = [P, a, of , u;, u:,? v;]~ and develop linearized difference 
equations for mass and momentum of the form 

(E’ + S’At)~“+’ = (E - CAt)c” - G. (4) 

Here S’ is analogous to S above in representing sonic propagation, C contains a2 
convection terms, and E’ may include interfacial exchange terms; one observes rhat 
E’ is block diagonal with blocks 

1 
and 

up, + KAr -KAr 
1 

-KAt (I -a)pr+KAij 
Mice. 

These blocks are invertible provided only that 0 < u < 1 and the remaining quantities 
are positive: upon inverting E’ and reducing S’ we can again reduce (4) to a simple 
elliptic equation for pressures analogous to (3). This idea extends further to the full 
set of equations (1). A great deal of elaboration stands beteen this simphfied 
description and practical two-fluid calculations: for example? the mass equation 
divergences V . pv are approximated by conservative difference expressions; also the 
linearization alluded to above may be repeated more than once per time step, so rhat 
Newton’s method is used to solve the nonlinearities in the equations of state and in 
the exchange terms. Details can be found in Reed and Stewart ]S]. By appropriate 
use of donor cell differencing, the method can be made numerically stabie for time 
steps df limited only by the explicit differencing of C, the convection operator. The 
upper limit for Ar is the least time for either vapor of liquid to travel one spatiai mesh 
width in any direction. 

The advantages of this method are the inclusion of all multidimensionai transport 
terms, with the ability to treat arbitrary recirculating or reversed flow patterns, and 
very general boundary conditions (including functional relationships between Row 
rate and pressure). The method is efficient because the reduced pressure problem 
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contains all the coupled effects of interfacial exchanges and sonic propagation in 
compact form; even when the coupling is very strong, the pressure problem can be 
solved relatively cheaply. The method is also very robust because it is based on well- 
understood techniques. 

The principal disadvantage of this semi-implicit numerical method is the convective 
upper limit on time step size. The method was applied in the THERMIT code [S] to 
thermal-hydraulic analysis of light water reactor cores. For many of the transients 
such a code might calculate, this convective limit is mildly restrictive; but for some 
slower transients, one could achieve reasonable accuracy at lower cost if it were 
possible to take fewer time steps with larger At. Our aim in this paper is to present a 
new method of overcoming the time step limit associated with convection in one 
direction. This is particularly appropriate for reactor core calculations, where axial 
flow usually represents a far more restrictive time step limit than transverse flows. 
Other applications might be the multidimensional calculation of flow in a pipe, or in 
fast reactor subassemblies [9]. We have chosen a fractional step method in part 
because it may generalize to overcome convective limits in more than one direction. 

A third method has been proposed for multidimensional two-phase flow by 
Spalding [IO]. This method grew out of a technique originally developed for steady 
single-phase flow; it was then extended to transient problems and finally to two-fluid 
equations similar to (1). This method also treats all multidimensional transport terms 
and allows general boundary conditions. The method solves fully implicit difference 
equations and has therefore no a priori upper limit on time step size. An ingenious 
iteration scheme is used which requires strong underrelaxation of all variables to 
obtain convergence. (By strong we mean an underelaxation parameter very near 0.5). 
Wachspress [ 111 recently presented an illuminating convergence analysis of this 
method for steady incompressible single-phase flow. From this analysis one sees that 
the underrelaxation is needed to resolve the convection operator. A transient in which 
convection has small effect over each calculational time step (i.e., where the semi- 
implicit method is most effective) would be calculated inefftciently by this method 
unless one knew to eliminate the underrelaxation. For transients considered in this 
paper, where convection effects may be large in one direction but not in the other 
two, this fully implicit method might well need modification to be as efficient as our 
proposed method. All this applies to single-phase flow problems; for two-fluid 
equations the crucial underrelaxation parameters in the fully implicit technique of 
[lo] are chosen ad hoc, with no supportive convergence analysis. 

Fractional step methods [ 121 require only the convergence of solution techniques 
used in the separate fractional steps. We shall distinguish two types of fractional step 
methods (among others): time-splitting methods and stabilizing correction methods. 
In the next section we discuss possible time-splitting methods. In subsequent sections 
we propose a stabilizing corrections method, examine its numerical stability, and 
finally compare it to the semi-implicit method for a particular realistic thermal- 
hydraulic transient. We shall present the method for the two-fluid equations (l), even 
though like the semi-implicit method it has similar advantages for simpler equation 
sets (e.g., the homogeneous equilibrium model). 
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TIME-SPLITTING METESODS 

En studying fractional step methods we want to capitalize on the efficiency of the 
semi-implicit two-fluid calculation method, which distinguishes between sonic 
propagation and interphase coupling on the one hand, and convection on the other. 
The former are resolved through implicit differences in an appa.rently optima! way. 
with the latter relegated to explicit difference treatment. Fractional step methods jsee 
Yanenko [ 121 for a survey) separate the generator of an evolution operator into parts 
and build a solution over each time step out of fractional steps that resolve the 
different parts separately. Thus, our hope is to apply some variant of the semi- 
implicit technique in one fractional step, and add another Fractionai step (or steps) 
with implicit treatment of convection. 

One might object that a simpler way would be to spiit the two-fluid equations into 
parts acting in each of the coordinate directions. However, this would abandon the 
simultaneous multidimensional resolution of pressure disturbances solved so 
efftciently by the semi-implicit method. Some accuracy would be forfeited, 
particularly for problems involving interior obstacles ([ 13 1) 

To establish terminology, we shall use fi.actionai step methods to refer to the 
broadest class of techniques employing fractional time steps. y time-splitting we 
mean fractional step methods in which each part, or factor of the evolution operator, 
appears in one fractional step only. Stabilizing correction methods may, on the 
contrary, involve part of the operator differenced explicitly in one fractionai step, 
with adjustment by an implicit resolution in another step. (Which comes ‘“before” and 
“‘after” may be a matter of arbitrarily selecting one fractional step as the ‘Yirst.“) 
While usage of these terms in the literature varies, the above distinctions serve our 
purposes and appear consistent with f 121. 

The idea of time-splitting by physical phenomenon is not new; Yanenko [;4] 
reported applying the idea to gas dynamics problems. We shah consider application 
to two-phase thermal hydraulics problems. Furthermore, we insist on strictly conser- 
vative differeuces approximations, since in closed circuit flow problems the loss of 
mass or energy for numerical reasons would be intolerable. (Strict numericai conser- 
vation of momentum is less important due to the large sources and sinks of 
momentum era a forced convection loop.) There exist numerotts realizations of time- 
splitting in ftnite differences, but our particular goals will force the main choices. 

Consider for simplicity the one-dimensional form of the single-phase mass conser- 
vation equation 

appt + a@v)/az = 0. 

Adopting the usual staggered spatial mesh, with fluid state variables (density. 
pressure, temperature, viscosity, etc.) defined at integer-numbered cell centers (e.g.. 
k, k - 1) and velocities at half-integer numbered cell faces (e.g., Ic - $7 k + f)? we seek 
to split 

,o;+’ -p;: + (At/Az)@;+?v;$ -p;+;v;‘;,,) = 0 (5: 
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into fractional steps 

pi+ I’* - pk” + (.4&4z)p:(v;,+ :;: - 0;: :::> = 0 

and 

n+l 
pk -Pk “+lP + (df/Az)v~~,,@;+‘-p~_‘;) = 0, 

(64 

(6b) 

the first relating to sonic propagation and the second to convection. Spatial indices in 
(6) are chosen so that the sum of the space-difference terms yields the conservative 
form of (5). We can fill in the question marks as follows. The time level of p in Eq. 
(6a) will be either n or n - j, the level of ZI in Eq. (6b) either y1 + f or n. Consider a 
steady flow solution of (5), that is, pI+l= * pk; although i?pv/t?z = 0 for steady one- 
dimensional flows, &/3z may certainly be nonzero, so that pg+‘12 #pi even for 
steady flow. In order for Eqs. (6) to add up to pi+’ -pi = 0, we must therefore chose 
time level n for p in Eq. (6a) and IZ + f for u in Eq. (6b). Thus if one wants densities 
and velocities consistent with mass conservation, one must use density from the 
convective fractional step and velocity from the sonic fractional step to form the mass 
flux pv. 

This is an interesting point not mentioned in [ 141, and might be of little conse- 
quence in certain applications; however, in two-phase thermal hydraulics problems it 
is crucial. Consider, for example, the steady flow of liquid along a heated tube. As 
the liquid temperature rises, its density decreases and the local velocity increases in 
order that pv remain constant. Since the liquid density is little affected by pressure, 
one can obtain a good approximate solution by discarding the momentum equation 
and integrating 3pv/i?z = 0 and apve/az = Q,, or ae/az = Q,/pv. In other words, the 
conservation of mass and energy essentially determine p and v along the tube. 
Therefore, if one used a time-splitting scheme like Eqs. (6) above, one would have to 
regard n-level densities as correct and n +$-level densities as numerical artifice. One 
can easily seen that for large Courant numbers vdt/dz, the difference between pi+’ 

and pz + ‘I2 would be larger than the spatial density differences. This wreaks havoc on 
the treatment of interfacial exchange terms. For example, interfacial drag in the two- 
fluid momentum equations must be differenced implicitly, so either the correct 
relative velocity will be balanced against the incorrect pressure gradient, or vice 
versa. 

If there is a way past this dilemma using what we are calling time-splitting 
methods, we have not found it. Therefore we turn to a second kind of fractional step 
method, stabilizing corrections. 

STABILIZING CORRECTIONS METHOD 

The semi-implicit method was symbolized above 

(E’ + S’dt)~“+’ = (E - Cdf)c” - G, 
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where E’, S’ represent interphase exchange and sonic propagation, and C represents 
convection. In the same symbolism our stabilizing corrections metbo can be 
summarized as follows. Let 9, C each be split into two parts, one containing ok{ 
diflferences in the z-direction, and another part comprising X- and y-directiorr 
differences, thus 

s’=s;+s:,, c= c, + 6,. 

Ogr method consists of a first fractional step 

(E’ + S’At)y+1!2 = (E - CAryy - G iy7) 

identical to the semi-implicit step, but with At larger than the axial convective limit, 
followed by a correction 

(E’ + S;At + C;At)~“+’ = (E’ + S;At)~“+‘~’ + CzAtgn (8) 

which “undoes” the axial difference solution of the first step and replaces it by a My 
implicit solution in the axial direction. Since C,,, is still treated explicitly, the 
convective limits in the transverse directions must be respected. We note that the 
numerical stability of this method is not obvious, since the first step by itself would 
be unstable for At > max(Az/v,,Az/v,)? and since summing Eqs. (7) and (8) does not 
eliminate En+ I/‘. The question of stability will be discussed in the next section. 

The above equations gloss over some important details of solving the nonlinear 
conservative difference equations. A more complete description is in order. 

For simplicity we shall consider the two-dimensional case, and present oniy the 
detailed difference equations of the vapor phase; the liquid phase equations are iden- 
tical in form. The difference equations are based on the usual staggered grid with 
a. p,, e,? P defined at cell centers indexed ajk, etc. Indexj refers to x-direction, k to z- 
direction. The velocities UC and v, are defined at cell faces normal to their associated 
directions, and have indices (j + 4, k) and (j, k + $1, respectively. In the difference 
equations below, only spatial indices which differ from the indices of the first (time 
difference) term are indicated; thus in the mass equation (a~,) means (a~~)~~~ while in 
the x-momentum equation (a~,) means (a~~~)~+~~~.~. The difference equations for the 
semi-implicit fractional step are 

= -KAt($p - u;jn+ ‘I2 - F; At(#)“+ Ii’, (33) 



84 H. BRUCE STEWART 

(9c) 

(app, e,)” + ‘I* - (wL,eJn + $ { [(ap,e,)“A,(u~)“+“*]:+::: 

+ [ (ap”eJ”A,(u:;)“+ “‘],“’ :;:} + P” 
I 
an+ “2 - an 

I 
= (Q + QJn+ 1~2dt. (9d) 

Volume V and areas A,, A, depend on the space mesh and rod bundle geometry. The 
notation [ I:?:$ indicates a spatial difference ( )j+ ,,Z - ( )i-y2. Donor cell rules 
govern the explicit velocity differences in the momentum equations (choices indicated 
correspond to nonnegative velocities) and also define the cell face values of a, p,, e, 
in the mass and energy equation differences. All terms on the right of mass and 
energy equations may depend on a n+i/2, Pn+l”, Tif ‘12, T;Z+‘/’ at node (j, k) and on 
other variables at time level n. The method used to solve the above equations uses the 
reduction to a Poisson pressure problem, as sketched in the Introduction and detailed 
in Reed and Stewart [8]. 

The second fractional step stabilizes by correcting all axial convection terms in the 
above equations. It turns out that this can be done by solving a series of one- 
dimensional problems. First we stabilize the axial convection term in the transverse 
momentum equation by solving 

(w,)” [(ut)‘+’ - (ut),+“* + $ (ut)“[(~~)~+‘]t-~ 1 

+ Kdt(u; - u;y+ l + I$ dt(u~)“+ L 

= Kdt(ut - uf)n+1’2 + F$4f(u~)n+‘/2 + (ap,>” $- (ut)“[(u~)“]~-, . (10) 

We have written unknowns on the left to show that only L$, z$ appear at time level 
n + 1. Note that the stabilized cross-velocities involve not only implicit convective 
differences but new implicit exchange terms as well. Equation (10) and its mate for 
the liquid phase can be solved together. In fact, they form a system of linear 
equations in which each axial column of nodes can be solved independently by 
Gaussian elimination of a block tridiagonal matrix with 2 x 2 blocks. 
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The remaining stabilizing correction equations are also coupled; rhey are 

Note that the level n + 1 cross-velocities UC also appear in the mass and energy 
equations as stabilizing corrections; we have put these terms on the right because 
they are known at this stage. The terms on the left contain the unknowns at level 
c + I. Closer inspection shows that Eqs. (11): together with their liquid-phase cou.n- 
terparts, can be grouped into separate systems for each axial channel; the channels 
can thus be solved independently of each other. Furthermore, the structure of the 
equations for an axial channel is identical to that for a one-dimensional flow problem 
with fully implicit differencing. Such equations can be and have in the past been 
solved by a Newton iteration technique in which the Jacobian matrix (a block 
tridiagonal one with partially filled 6 x 6 blocks) is directly inverted by Gaussian 
elimination. Such a one-dimensional fully implicit technique has been used (with 
equations slightly different from (1)) in the TRAC code [6]: for example. 

In sum, our method starts with a first fractional step in which semi-~rn~i~c~t 
difference equations are solved for a time step size Ar above the axial convective 
stability limit. In the second fractional step, stabilizing corrections are computed first 
for the cross-velocities (one axial column of nodes at a time), then for axial velocities. 
densities, energies by a one-dimensional fully implicit method applied to eat 
channel. Since inverting the 1 -D fully implicit Jacobian takes somewhar more 
computational effort per node than the semi-implicit method? this s~~.bil~~~~~ 
corrections scheme will be advantageous when At is at least twice the axial convective 
limit. 
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NUMERICAL STABILITY 

The fractional step method we have chosen has an advantage in accuracy, as will 
be demonstrated below; however, it is no trivial task to verify the numerical stability 
of the method. We have carried out a von Neumann local linear stability analysis of 
the difference equations (9)-( 1 1 ), neglecting the energy equations and the phase 
change rate r, but including the interfacial drag term for momentum exchange. The 
reason for this is that the two-fluid equations (1) are known to have a pair of 
complex characteristic roots, indicating they do not lead to a well-posed initial value 
problem. (The mathematical theory is not absolutely conclusive, but Lax [ 151 has 
shown that solutions of linearized systems with complex characteristics cannot be 
bounded in terms of initial data, and more recently in [16] has considered non-linear 
systems.) Hence no consistent numerical scheme for the two-fluid equations (1) will 
be stable in the usual sense. Notwithstanding their ill-posedness, two-fluid equations 
can be solved numerically and give well-behaved results, as shown in [ 17 1, if inter- 
facial drag is present and mesh spacing is not unreasonably fine. 

To carry out a linear stability analysis, we consider the growth of a Fourier mode 
of the discrete solution of Eqs. (9)-( 11) with <Tk = g” exp(ijldx) exp(ikm AZ), where 
I Ax, m AZ take values equal to 71 divided by a positive integer less than or equal to 
the total number of mesh points in the appropriate direction. This Fourier mode we 
characterize by the vector 5” = [P”, on, (LIZ)“, (VT)“, (v:)“, ($)“I at time level n, by 
5 n+’ at time level IZ + 1. After linearizing Eqs. (9a) - (9c) for vapor and liquid we 
obtain a system of linear equations relating gn+l’* to 5”; similarly linearizing Eq. (10) 
leads to a relation amongst g”+l, g”+“‘, and c”, while Eqs. (1 lat(l lb) yield a 
relation between Z,“” and 5”. By eliminating Z/+l” from these linear equations, we 
obtain equations 

from which the amplification factors 1 can be found (cf. [ 18, p. 68ff.l) as the roots of 

det(A1 -B) = 0. (14 

As in [ 171, our ad hoc condition for a well-behaved numerical procedure is that 
]I[ < 1. The characteristic equation (12) was generated with the aid of the 
MACSYMA symbolic computing system [ 191; in the special case v, = vI and 
c, = cl = co, the roots are 

41 - a)P,P,(l - %> 41 - a)iw - 4 
41 - a)pupdl + u,) + KAtp a(1 - a)F(l + uZ) + KAt 

(1 - u,)/(l - 24) t wice, and zero twice. Here p = appu + (1 - a)pl, p = ap[ + (1 - a)pL,, 
u, = (v”At/Ax)[ 1 - exp(--ilAx)], and ur = (zYAt/Az)[ 1 - exp(-imdz)]. For 
comparison, the equation 4, + v”dr = 0 solved by explicit donor-cell differences would 
give the amplification factor 1 - u,. while the equation #! + ~‘4~ solved by implicit 
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differences would give l/(1 + ui). Thus the above expression indicates weld-behaved 
rmmerical solutions (IJ. / < 1) in the equal velocity, incompressible fluids case, 
provided the Courant-Friedrichs-Lewy condition j U-’ dr/dx/ < 1 is satisfied for the 
cross velocities. This holds for all K > 0, since Eqs, (1) have no complex charac- 
teristics when v,, = v[. 

For the more general case we have had to rely on numerical sslution of 
MBCSYMA-generated expressions for (12) over the range of expected values of :he 
pressure, void fraction, velocities, and mesh spacing. In ah cases we found I?,/ < 1 if 
the cross-velocites remain below the convective limit and if the fluid velocities are less 
than or equal to the individual phase sonic velocities. In practice, al! our calculations 
of pressurized water reactor (PWR) core thermal hydra&c transients have been well 
behaved. An arbitrary test problem at near-atmospheric pressure was also we41 
behaved. 

NUMERICAL EXAMPLE 

To test the stabilizing corrections method, we computed a PWR transient with 
considerable asymmetry in the transverse directions. The test problem involved nine 
typical channels arranged together in a 3 X 3 array (cf. Fig. 1). Starting from normal 
fuil flow in the axial direction and full-power heat generation in the fuel rods, the 
transient involved the following sequence of events. (1) At t = 0 the inlet velocities 
begin to decay exponentially until after 60sec they are 10 % of initial values; this 

10 mesh cells 

u 
inlet flow 

/ channels with inlet 
2 temperature decrease 

temperature decrease 
and stuck control rods 

FIG. 1. Test problem configuration. 
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corresponds to a coastdown of all reactor coolant pumps such as might occur with a 
loss of AC power at the plant site. (2) At t = 3 seconds, the heat generation rate in 
all fuel rods drops abruptly to about 14 % of full power, and then decays exponen- 
tially to about 4 % after 60 set, except in one channel which has an excess of heat 
generation equal to 2% of the initial power; this corresponds to reactor scram with 
one stuck control element assembly. (3) At t = 4 set the inlet temperatures in one row 
of three channels begin to decrease until at the end of 60 set they are about 8.5” C 
lower than in the other channels; this corresponds to a steamline break in one 
primary loop. The purpose of this test problem was of course not to analyze the 
physical modelling of such accident conditions, but only to compare the semi-implicit 
method with the stabilizing crrections method in terms of numerical accuracy and 
computing efficiency. 

The axial velocities during this transient with the chosen mesh spacing impose 
maximum time step sizes with the semi-implicit method from about 0.07 set at full 
flow to 0.3 set after 60 set; we chose l-second time steps with the stabilizing 
corrections method except during the initial period of most rapid decrease in the 
power when smaller time steps were used. The total number of time steps was 364 
with the semi-implicit method and 86 with the stabilizing corrections. Both methods 
used three Newton iterations for the semi-implicit step; the one-dimensional fully 
implicit iterations reached full convergence in two iterations. The transient required 
187 set of CPU time on a CDC 7600 for the semi-implicit method versus 59 set for 
the stabilizing corrections method. (With a relatively simple overlapping storage 
scheme, the core storage requirements of the two methods are the same.) 

Multidimensional two-fluid calculations such as these produce a wealth of infor- 
mation, including three-dimensional velocity vector fields as well as scalar fields for 
void fraction, pressure, and fluid conditions throughout the transient. Rather than 
reproduce the results in detail, we summarize the comparison of the two methods. 
The largest discrepancy was in the void fractions, which rose to about 7 % 
(accounting for subcooled boiling) at the time of reactor scram; the two calculations 
disagreed by about 0.5 % in the largest voids. After scram, the voids collapsed and 
the flow became single-phase; at the end of 60 set the liquid axial velocities agreed 
within less than one percent, while the cross-velocities agreed within about 2 % of the 
largest values. Both methods show the onset of a flow recirculation pattern within the 
core at about 60 sec. The resulting locally negative axial velocities would cause a 
breakdown if a marching solution method were used, but the stabilizing corrections 
method continued to compute the recirculation with no difficulty. 

CONCLUSIONS 

We have shown that a semi-implicit numerical method for two-fluid calculation of 
two-phase flow can be extended to overcome the convective time step size limitation 
in one direction. This extension is a fractional step method of the stabilizing 
corrections type, and can be efficient for slowly evolving transients with flow 
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predominateiy in one direction. A realistic themal reactor core therma~-h~~dra~~~~ 
problem demonstrated the accuracy and improved computing efficiency of the 
method. 

There are several directions for further development. One involves more effrciem 
solution of the one-dimensional fully implicit equations; although the 1 - 49 Newton 
Iterations converged quickly for the problems we have computed, a convergence 
acceleration technique was recently devised 1201 for 1 - D problems that could be 
appiied to our stabilizing corrections step. Another possibility is that a recentiy 
announced two-step method for one-dimensional two-fluid calculations [2l] cou3 be 
used to supplant the one-dimensional fully imphcit axial calculations in the 
stabilizing corrections. 

Further development could also lead to overcoming time step limits due to 
convection in ail directions. A natural extension of the fractional step method t&$t 
for example employ convection-stabilizing corrections successively for each coor- 
dinate direction. The result would be a method of the same degree of numericai 
implicitness as that of Spalding and co-workers [ 101. It is an open question ~fhicii 
approach would in general be more efficient, and the answer to that question may in 
part depend on what sort of convergence analysis can be furnished for the lat;er 
method in the two-fluid case. 

ACKNOWLEDGMENTS 

The numerical stability analysis for this paper was done with the aid of MACSYMA, a large symboric 
manipulation program developed at the MIT Laboratory for Computer Science and supported by the 
Nattonal Aeronautics and Space Administration under Grant NSG 1323, by the Office Gf Naval 
Research under Grant NOOO14-77-C-0641. by the U. S. Department of Energy under Grant ET-78.C02. 
4687. and by the U. S. Air Force under Grant F-49620-79-C-020. 

REFERENCES 

1. M. ISHII, “Thermo-fluid Dynamic Theory of Two-phase Flow,” Eyrohes, Paris, 1975. 
2. J. H. STUI~MILLER. Report EPRI NP-197, 1976. 
3. D. A. DREW AND R. T. LAHEY, JR., Int. J. M&phase Flow S (1979), 233-264, 
4. R. E. M~~STER~IXI AND L. WOLF, Report MITNE-203, 1977. 
5. D. S. ROWE, Report BNWL-1695. 1973. 
6. D. R. LILES AND W. H. REED, J. Comput. Phys. 26 (1978), 39WG7. 
I. F. H. HARLOW AND A. A. AMMSDEN, J. Comput. Phys. 8 (197’1). 197-213. 
8. W. H. REED AND H. B. STEWART, EPRI Report, in press. 
9. M. R. GRANZ~ERA AND M. S. KAZIMI, Trans. Amer. .Md. Sot. 33 (1979). 5iS-516. 

LO. D. 8. SPALDING, Imperial College (London) Report HTS/7/17, 1977. 
1 I. E. L. WACHSPRESS. Report KAPL-4116, 1979. 
12. N. N. YANENKO. “The Method of Fractional Steps,” Springer-Verlag, New York/~eide~berg/~er~~~. 

1971. 
i 3. J.W. MAHAFFY. personal communication, 
14. N;. N. YANENKO AND V. M. KOVENYA, Soviet Math. Dok!. 18 j1977), 26&264. 



90 H. BRUCE STEWART 

15. P. D. LAX, Duke Math. J. 24 (1957), 627-648. 
16. P. D. LAX, Comm. Pure Appl. Math. 33 (1980), 395-397. 
17. H. B. STEWART, J. Comput. Phys. 33 (1979), 259-270. 
18. R. D. RICHTMYER AND K. W. MORTON, “Difference Method for Initial Value Problems,” Second 

ed.. Interscience, New York, 1967. 
19. MACSYMA Reference Manual, MIT Laboratory for Computer Science, 1977. 
20. D.A. DUBE AND H. B. STEWART, to appear. 
21. J. H. MAHAFFY, Report LA-7951.MS, 1979. 


